Some Novel Features of Three Dimensional MagnetoHydroDynamic Plasma G-MHD3D: DNS Code for 3D MHD Plasma Modelling Rupak Mukherjee Rajaraman Ganesh Abhijit Sen Institute for Plasma Research, HBNI, Gandhinagar, Gujarat, India rupakmukherjee01@gmail.com rupak@ipr.res.in ganesh@ipr.res.in abhijit@ipr.res.in Princeton Plasma Physics Laboratory 12 November, 2018 Aim of the Talk #### Direct Numerical Simulation (DNS) study of *3D* Single fluid MagnetoHydroDynamic equations have been carried out to explore - Nonlinear Coherent Oscillation a energy oscillation between kinetic and magnetic modes. RM, R Ganesh, Abhijit Sen; arXiv:1811.00744 - 2 "Recurrence Phenomena" a periodic reconstruction of initial flow of fluid & magnetic variables. RM, R Ganesh, Abhijit Sen; arXiv:1811.00754 - 3 "Dynamo Effect" Mean and intermediate scale magnetic field generation from driven chaotic flows. [Ongoing] - **1** Finite mode / Galerkin representation confirms nonlinear interaction of few modes. - 2 Rayleigh Quotient determines criteria of recurrence. [Key Parameter: Initial Condition] - 3 Parameter set for *fast* dynamo is explored [Key Parameters: Forcing amplitude $(\vec{f_0})$ & Driving scale (k_f)] Aim of the Talk Direct Numerical Simulation (DNS) study of 3D Single fluid MagnetoHydroDynamic equations have been carried out to explore - Nonlinear Coherent Oscillation a energy oscillation between kinetic and magnetic modes. RM, R Ganesh, Abhijit Sen; arXiv:1811.00744 - 2 "Recurrence Phenomena" a periodic reconstruction of initial flow of fluid & magnetic variables. RM, R Ganesh, Abhijit Sen; arXiv:1811.00754 - 3 "Dynamo Effect" Mean and intermediate scale magnetic field generation from driven chaotic flows. [Ongoing] - **1** Finite mode / Galerkin representation confirms nonlinear interaction of few modes. - 2 Rayleigh Quotient determines criteria of recurrence. [Key Parameter: Initial Condition] - 3 Parameter set for *fast* dynamo is explored [Key Parameters: Forcing amplitude $(\vec{f_0})$ & Driving scale (k_f)] Direct Numerical Simulation (DNS) study of 3D Single fluid MagnetoHydroDynamic equations have been carried out to explore - Nonlinear Coherent Oscillation a energy oscillation between kinetic and magnetic modes. RM, R Ganesh, Abhijit Sen; arXiv:1811.00744 - 2 "Recurrence Phenomena" a periodic reconstruction of initial flow of fluid & magnetic variables. RM, R Ganesh, Abhijit Sen; arXiv:1811.00754 - 3 "Dynamo Effect" Mean and intermediate scale magnetic field generation from driven chaotic flows. [Ongoing] - Finite mode / Galerkin representation confirms nonlinear interaction of few modes. - 2 Rayleigh Quotient determines criteria of recurrence. [Key Parameter: Initial Condition] - Parameter set for *fast* dynamo is explored [Key Parameters: Forcing amplitude $(\vec{f_0})$ & Driving scale (k_f)] #### Single Fluid 3D-MHD equations evaluated by G-MHD3D $$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0$$ $$\frac{\partial (\rho \vec{u})}{\partial t} + \vec{\nabla} \cdot \left[\rho \vec{u} \otimes \vec{u} + P_{tot} \vec{\bar{l}} - \frac{1}{4\pi} \vec{B} \otimes \vec{B} - 2\nu \rho \vec{\bar{S}} \right] = \rho \vec{F}$$ $$\frac{\partial E}{\partial t} + \vec{\nabla} \cdot \left[(E + P_{tot}) \vec{u} - \frac{1}{4\pi} \vec{u} \cdot (\vec{B} \otimes \vec{B}) \right]$$ $$\left[-2\nu \rho \vec{u} \cdot \vec{\bar{S}} - \frac{\eta}{4\pi} \vec{B} \times (\vec{\nabla} \times \vec{B}) \right] = 0$$ $$\frac{\partial \vec{B}}{\partial t} + \vec{\nabla} \cdot (\vec{u} \otimes \vec{B} - \vec{B} \otimes \vec{u}) = \eta \nabla^2 \vec{B}$$ $$S_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i) - \frac{1}{3} \delta_{ij} \vec{\nabla} \cdot \vec{u}$$ $$P_{tot} = P_{th} + \frac{1}{9\pi} |\vec{B}|^2; \quad P_{th} = C_s^2 \rho$$ 3/21 IPR, India Rupak Mukherjee Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</ Scope of the code - Evaluates single fluid 3-D MagnetoHydroDynamic equations. - Pseudo-spectral technique is more accurate and faster than standard finite difference methods. [FFTW & cuFFT library] - Can handle effects arising due to weak compressibility. - 3D Isosurface reconstruction is developed using *Mayavi*. - Diagnostics viz. Energy spectra, Particle & Field Line tracer (Cloud-In-Cell & Velocity Verlet scheme), Poincare Section are developed. [In collaboration with Vinod Saini, IPR] - GPU code optimisation is achieved with OpenACC and CUDA parallelisation. [With Naga Vydyanathan, NVIDIA, India] - Multi-GPU parallalisation (for high resolution runs) with NV-Link is in progress to run on NVIDIA-DGX station.[In collaboration with Naga Vydyanathan, NVIDIA, India] RM, R Ganesh, V Saini, U Maurya, N Vydyanathan, B Sharma, Accepted in conf proceed of HiPC Workshop, 2018 Rupak Mukherjee IPR, India Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ Scope of the code - Evaluates single fluid 3-D MagnetoHydroDynamic equations. - Pseudo-spectral technique is more accurate and faster than standard finite difference methods. [FFTW & cuFFT library] - Can handle effects arising due to weak compressibility. - 3D Isosurface reconstruction is developed using *Mayavi*. - Diagnostics viz. Energy spectra, Particle & Field Line tracer (Cloud-In-Cell & Velocity Verlet scheme), Poincare Section are developed. [In collaboration with Vinod Saini, IPR] - GPU code optimisation is achieved with OpenACC and CUDA parallelisation. [With Naga Vydyanathan, NVIDIA, India] - Multi-GPU parallalisation (for high resolution runs) with NV-Link is in progress to run on NVIDIA-DGX station.[In collaboration with Naga Vydyanathan, NVIDIA, India] RM, R Ganesh, V Saini, U Maurya, N Vydyanathan, B Sharma, Accepted in conf proceed of HiPC Workshop, 2018 Rupak Mukherjee IPR, India Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ Scope of the code - Evaluates single fluid 3-D MagnetoHydroDynamic equations. - Pseudo-spectral technique is more accurate and faster than standard finite difference methods. [FFTW & cuFFT library] - Can handle effects arising due to *weak* compressibility. - 3D Isosurface reconstruction is developed using *Mayavi*. - Diagnostics viz. Energy spectra, Particle & Field Line tracer (Cloud-In-Cell & Velocity Verlet scheme), Poincare Section are developed. [In collaboration with Vinod Saini, IPR] - GPU code optimisation is achieved with OpenACC and CUDA parallelisation. [With Naga Vydyanathan, NVIDIA, India] - Multi-GPU parallalisation (for high resolution runs) with NV-Link is in progress to run on NVIDIA-DGX station.[In collaboration with Naga Vydyanathan, NVIDIA, India] RM, R Ganesh, V Saini, U Maurya, N Vydyanathan, B Sharma, Accepted in conf proceed of HiPC Workshop, 2018 Rupak Mukherjee IPR, India Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Oscillation Oscilla Scope of the code - Evaluates single fluid 3-D MagnetoHydroDynamic equations. - Pseudo-spectral technique is more accurate and faster than standard finite difference methods. [FFTW & cuFFT library] - Can handle effects arising due to *weak* compressibility. - 3D Isosurface reconstruction is developed using *Mayavi*. - Diagnostics viz. Energy spectra, Particle & Field Line tracer (Cloud-In-Cell & Velocity Verlet scheme), Poincare Section are developed. [In collaboration with Vinod Saini, IPR] - GPU code optimisation is achieved with OpenACC and CUDA parallelisation. [With Naga Vydyanathan, NVIDIA, India] - Multi-GPU parallalisation (for high resolution runs) with NV-Link is in progress to run on NVIDIA-DGX station.[In collaboration with Naga Vydyanathan, NVIDIA, India] RM, R. Ganesh, V. Saini, U. Maurya, N. Vydyanathan, B. Sharma, Accepted in conf. proceed of HiPC Workshop, 2018. Rupak Mukherjee IPR, India Scope of the code - Evaluates single fluid 3-D MagnetoHydroDynamic equations. - Pseudo-spectral technique is more accurate and faster than standard finite difference methods. [FFTW & cuFFT library] - Can handle effects arising due to *weak* compressibility. - 3D Isosurface reconstruction is developed using *Mayavi*. - Diagnostics viz. Energy spectra, Particle & Field Line tracer (Cloud-In-Cell & Velocity Verlet scheme), Poincare Section are developed. [In collaboration with Vinod Saini, IPR] - GPU code optimisation is achieved with OpenACC and CUDA parallelisation. [With Naga Vydyanathan, NVIDIA, India] - Multi-GPU parallalisation (for high resolution runs) with NV-Link is in progress to run on NVIDIA-DGX station.[In collaboration with Naga Vydyanathan, NVIDIA, India] RM, R Ganesh, V Saini, U Maurya, N Vydyanathan, B Sharma, Accepted in conf proceed of HiPC Workshop, 2018 Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</ Motivation #### Nonlinear Coherent Oscillation - Within the premise of Single fluid MHD, energy can cascade through both kinetic and magnetic channels simultaneously. - With weak resistivity, MHD model predicts - - 1). irreversible conversion of magnetic energy into fluid kinetic energy (i.e. reconnection). - 2). conversion of kinetic energy into mean large scale magnetic field (i.e. dynamo). - Question: For a given fluid type and magnetic field strength, are there fluid flow profiles which do neither? - Answer: Yes. For a wide range of initial flow speeds or Alfven Mach number it is shown that the coherent nonlinear oscillation persist. . .. Motivation #### Nonlinear Coherent Oscillation - Within the premise of Single fluid MHD, energy can cascade through both kinetic and magnetic channels simultaneously. - With weak resistivity, MHD model predicts - - 1). irreversible conversion of magnetic energy into fluid kinetic energy (i.e. reconnection). - 2). conversion of kinetic energy into mean large scale magnetic field (i.e. dynamo). - Question: For a given fluid type and magnetic field strength, are there fluid flow profiles which do neither? - Answer: Yes. For a wide range of initial flow speeds or Alfven Mach number it is shown that the coherent nonlinear oscillation persist. 5/2 #### Nonlinear Coherent Oscillation - Within the premise of Single fluid MHD, energy can cascade through both kinetic and magnetic channels simultaneously. - With weak resistivity, MHD model predicts - - 1). irreversible conversion of magnetic energy into fluid kinetic energy (i.e. reconnection). - 2). conversion of kinetic energy into mean large scale magnetic field (i.e. dynamo). - Question: For a given fluid type and magnetic field strength, are there fluid flow profiles which do neither? - Answer: Yes. For a wide range of initial flow speeds or Alfven Mach number it is shown that the coherent nonlinear oscillation persist. #### Nonlinear Coherent Oscillation - Within the premise of Single fluid MHD, energy can cascade through both kinetic and magnetic channels simultaneously. - With weak resistivity, MHD model predicts - - 1). irreversible conversion of magnetic energy into fluid kinetic energy (i.e. reconnection). - 2). conversion of kinetic energy into mean large scale magnetic field (i.e. dynamo). - Question: For a given fluid type and magnetic field strength, are there fluid flow profiles which do neither? - Answer: Yes. For a wide range of initial flow speeds or Alfven Mach number it is shown that the coherent nonlinear oscillation persist. . .. Nonlinear coherent oscillation in two spatial dimensions at Alfven resonance ($C_s = V_A$). #### Orszag-Tang Flow $$u_x = -A\sin(k_0y)$$ $$u_y = +A\sin(k_0x)$$ #### Cat's Eye Flow $$u_x = +\sin(k_0x)\cos(k_0y) - A\cos(k_0x)\sin(k_0y)$$ $$u_y = -\cos(k_0x)\sin(k_0y) + A\sin(k_0x)\cos(k_0y)$$ 6/21 $$u_0 = \frac{L}{t_0}$$, $V_A = \frac{B_0}{4\pi \sqrt{\rho_0}}$, $M_S = \frac{u_0}{C_S}$, $M_A = \frac{u_0}{V_A}$, $Re = \frac{\rho_0 u_0 L}{\nu}$, $R_m = \frac{Lu_0}{\eta}$. Nonlinear coherent oscillation in two spatial dimensions at Alfven resonance ($C_s = V_A$). #### Orszag-Tang Flow $$u_x = -A\sin(k_0y)$$ $$u_y = +A\sin(k_0x)$$ #### Cat's Eye Flow $$u_x = +\sin(k_0x)\cos(k_0y) - A\cos(k_0x)\sin(k_0y) u_y = -\cos(k_0x)\sin(k_0y) + A\sin(k_0x)\cos(k_0y)$$ $$u_0 = \frac{L}{t_0}$$, $V_A = \frac{B_0}{4\pi\sqrt{\rho_0}}$, $M_s = \frac{u_0}{C_s}$, $M_A = \frac{u_0}{V_A}$, $Re = \frac{\rho_0 u_0 L}{\nu}$, $R_m = \frac{Lu_0}{\eta}$. #### Nonlinear Coherent Oscillation at Alfven Resonance (Sound speed = Alfven speed) in 3D In three spatial dimensions #### Nonlinear Coherent Oscillation at Alfven Resonance (Sound speed = Alfven speed) in 3D Ms МΔ A = B = CRe Rm k_0 64³ 10^{-5} $2\pi^3$ 0.1 450 450 0.1 Observations 000000 #### 3D ABC Flow with different M_A $u_x = U_0[A\sin(k_0z) + C\cos(k_0y)]$ $u_y = U_0[B\sin(k_0x) + A\cos(k_0z)]$ Frequency of energy exchange scales linearly with M_A 8/21 ■ With external forcing similar to initial flow the plasma acts as a forced-relaxed system both in two and three dimensions. 8/21 Observations #### 2D Orszag-Tang Flow with External Forcing $\vec{f} = \alpha \begin{bmatrix} -A\sin(k_f y) \\ +A\sin(k_f x) \end{bmatrix},$ Kinetic Energy Shifted Kinetic, Magnetic and Total Energy Magnetic Energy otal Energy #### 3D ABC Flow with different M_A $u_x = U_0[A\sin(k_0z) + C\cos(k_0y)]$ $u_y = U_0[B\sin(k_0x) + A\cos(k_0z)]$ $u_z = U_0[C\sin(k_0y) + B\cos(k_0x)]$ Frequency of energy exchange scales linearly with M_A . -0.004 .0.006 Shifted Kinetic E -0.012 ■ With external forcing similar to initial flow the plasma acts as -0.014 -0.016 Observations #### 2D Orszag-Tang Flow with External Forcing $$\vec{f} = \alpha \begin{bmatrix} -A\sin(k_f y) \\ +A\sin(k_f x) \end{bmatrix}, \quad \alpha = 0.1$$ #### 3D ABC Flow with different M_A $$u_x = U_0[A\sin(k_0z) + C\cos(k_0y)]$$ $$u_y = U_0[B\sin(k_0x) + A\cos(k_0z)]$$ $$u_z = U_0[C\sin(k_0y) + B\cos(k_0x)]$$ Frequency of energy exchange scales linearly with M_A . ■ With external forcing similar to initial flow the plasma acts as a forced-relaxed system both in two and three dimensions. IPR, India #### Galerkin representation of the field variables (stream function ψ ; vector potential A) $$\psi(x,y) = \psi_0 \sin kx + e^{iky} (\psi_1 + \psi_3 \cos kx) + e^{-iky} (\psi_1^* + \psi_3^* \cos kx)$$ $$A(x,y) = A_0 \sin kx + e^{iky} (A_1 + A_3 \cos kx) + e^{-iky} (A_1^* + A_3^* \cos kx)$$ $$\frac{d\psi_0}{dt} = ik^2(\psi_3^*\psi_1 - \psi_3\psi_1^*)$$ $$\frac{d\psi_1}{dt} = \frac{i}{2}k^2(\psi_0\psi_3 + A_0A_3)$$ $$\frac{d\psi_3}{dt} = 0$$ $$\frac{dA_0}{dt} = ik^2(A_3\psi_1^* - A_3^*\psi_1 + \frac{dA_1}{dt} = \frac{i}{2}k^2(A_0\psi_3 - A_3\psi_0)$$ $$\frac{dA_3}{dt} = ik^2(A_0\psi_1 - A_1\psi_0)$$ 9/21 Galerkin / Finite mode representation in two spatial dimensions Galerkin representation of the field variables (stream function ψ ; vector potential A) $$\psi(x,y) = \psi_0 \sin kx + e^{iky} (\psi_1 + \psi_3 \cos kx) + e^{-iky} (\psi_1^* + \psi_3^* \cos kx)$$ $$A(x,y) = A_0 \sin kx + e^{iky} (A_1 + A_3 \cos kx) + e^{-iky} (A_1^* + A_3^* \cos kx)$$ $$\frac{d\psi_0}{dt} = ik^2(\psi_3^*\psi_1 - \psi_3\psi_1^*)$$ $$\frac{d\psi_1}{dt} = \frac{i}{2}k^2(\psi_0\psi_3 + A_0A_3)$$ $$\frac{d\psi_3}{dt} = 0$$ $$\frac{dA_0}{dt} = ik^2(A_3\psi_1^* - A_3^*\psi_1 + A_1\psi_3^* - A_1^*\psi_3)$$ $$\frac{dA_1}{dt} = \frac{i}{2}k^2(A_0\psi_3 - A_3\psi_0)$$ $$\frac{dA_3}{dt} = ik^2(A_0\psi_1 - A_1\psi_0)$$ RECALL TO SERVICE AND SER #### Initial Condition $$\psi_0 = 1$$, $\psi_1 = 0 = \psi_3$ $A_0 = A_1 = A_3 = 1$ RM, R Ganesh, Abhijit Sen, arXiv:1811.00744 9/21 #### Summary of Nonlinear Coherent Oscillation - For decaying flows at Alfven resonance $(C_s = V_A)$, an initial uniform magnetic field profile leads to nonlinear coherent oscillation between kinetic and magnetic modes. - For externally driven flows, the nearly ideal magnetohydrodynamic plasma acts as a forced-relaxed system. - The oscillation can be captured through a finite mode expansion of the MHD equations indicating the energy content is primarily in the large scales of the system. - As the Alfven Mach number is increased further, a tendency to mean field dynamo is seen. Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ Introduction to Recurrence #### RECURRENCE in 3D MHD - Reconstruction of initial condition in statistically large degrees of freedom systems - counterintuitive to laws of thermodynamics and entropy - trapping in phase space. - Recurrence was first observed in 1D FPU system. - In 2D hydrodynamic systems, reconstruction of initial flow field was numerically observed by Yen & Ferguson and explained by A Thyagaraja. - However, generalising the analytical argument of recurrence in higher dimensional systems is quite challenging. - We observe recurrence in single fluid 3D MHD system. - We numerically extrapolate the previous analytical argument and find reasonable agreement with our DNS data. Recurrence - TG (√) flow No Recurrence - ABC (X) flow TG Flow & Roberts Flow ## Recurrence for TG & Roberts flow 14/21 ABC Flow & Cats Eye flow # No recurrence for ABC & Cats eye flow #### Rayleigh quotient - Rayleigh quotient [Q(t)] measures the number of effective - 'active degrees of freedom'. [Thyagaraja, Phys. Fluids, 22 (11), 2093; Thyagaraja, Phys. Fluids, 24 (11), 1973] • $$Q(t) = \frac{\int\limits_{V} \left[(\vec{\nabla} \times \vec{u})^2 + \frac{1}{2} (\vec{\nabla} \times \vec{B})^2 \right] dV}{\int\limits_{V} (|\vec{u}|^2 + \frac{1}{2} |\vec{B}|^2) dV} = \frac{\sum\limits_{k} k^2 |c_k|^2}{\sum\limits_{k} |c_k|^2}$$ where, $\vec{u} \& \vec{B}$ are expanded in a Fourier series. - If Q(t) is bounded \Rightarrow - For ABC & Cats eye 16/21 Rupak Mukherjee #### Rayleigh quotient - Rayleigh quotient [Q(t)] measures the number of effective - 'active degrees of freedom'. [Thyagaraja, Phys. Fluids, 22 (11), 2093; Thyagaraja, Phys. • $$Q(t) = \frac{\int\limits_{V} \left[(\vec{\nabla} \times \vec{u})^2 + \frac{1}{2} (\vec{\nabla} \times \vec{B})^2 \right] dV}{\int\limits_{V} (|\vec{u}|^2 + \frac{1}{2} |\vec{B}|^2) dV} = \frac{\sum\limits_{k} k^2 |c_k|^2}{\sum\limits_{k} |c_k|^2}$$ where, $\vec{u} \& \vec{B}$ are expanded in a Fourier series. - If Q(t) is bounded \Rightarrow Recurrence can happen. - For TG & Roberts flow. Q(t) is bounded. - For ABC & Cats eye flow Q(t) increases without bound. RM, R Ganesh, Abhijit Sen, arXiv:1811.00754 16/21 IPR, India Rupak Mukherjee Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence on the control cont #### Summary of Recurrence - Ideally very low probability of trapping in phase space in high dimensional systems (e.g. 3D MHD systems). - Recurrence is observed for flows involving few number of active degrees of freedom. [Birkhoff, Dynamical Systems, 1927, Chapter 7] - Generating the flows in experimental systems is achievable hence can be tested in laboratory experiments. - Recurrence can be helpful to make short time forecasts once typical initial profiles are experimentally obtained. - Dissipative regularisation of 3D MHD discards Hamiltonian description leading to weak deviation from initial profiles. - Conservative regularisation of 3D MHD [Thyagaraja, Phys Plasmas 17, 032503 (2010)] may offer better recurrence. #### Introduction to Driven "self consistent" Dynamos - Dynamo ⇒ Growth of magnetic energy at the cost of kinetic energy. [Mean field, Stretch-Twist-Fold (short scale) etc.] [Parker, ApJ, 122, 293 (1955), Cowling, MNRAS, 94, 39, (1933), Hotta, Science, 351, 6280 (2016)] - Work is in progress ⇒ Preliminary "fast" dynamo results. - Results from 64³ resolution runs. Higher resolution runs will be performed in multi-GPU code. - It was shown by Alexakis, ABC field provides fastest kinematic dynamos [Phys Rev E, 84, 026321 (2011)]. - We have tried to find optimised parameter set to obtain fast STF dynamos using ABC field. 18/2 'Self-consistent' Driven Dynamo / Driven Dynamo with back-reaction at $P_m=1$ and high M_A #### Search for "fast" dynamo with externally driven ABC flow - 'Self-consistent' dynamo saturates unlike kinematic dynamo. - Linear growth rate (γ) increases with magnitude of forcing & k_f . - Independent of initial condition. - Multistep growth of magnetic energy. 19/21 Figure: Saturation of self-consistent Dynamo action for different magnitude & wave-number of external forcing with parameters $N=64^3$ $L=2\pi^3$, $\delta t=10^{-4}$, $\rho_0=1$, $U_0=0.1$, $M_A=1000$, $M_S=0.1$, Re=Rm=450, A=B=C=0.1, 0.2, 0.3 and 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, Preliminary results on self-consistent externally driven STF dynamo from GMHD3D #### Kinetic and Magnetic Energy Spectra indicating STF dynamo - Shell averaged kinetic energy spectra saturates with slope -5/3. - Shell averaged magnetic energy spectra saturates with slope 0.7. - Preliminary energy spectra shows large and intermediate scales in magnetic variables are energetically dominant. - High resolution runs are needed to explore short scales. Preliminary results on self-consistent externally driven STF dynamo from GMHD3D #### Kinetic and Magnetic Energy Spectra indicating STF dynamo - Shell averaged kinetic energy spectra saturates with slope -5/3. - Shell averaged magnetic energy spectra saturates with slope 0.7. - Preliminary energy spectra shows large and intermediate scales in magnetic variables are energetically dominant. - High resolution runs are needed to explore short scales. - \Rightarrow Need for Multi-GPU G-MHD3D code. 20/2 Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra Summary & Discussions #### Summary & Discussions - Coherent nonlinear oscillation between fluid and magnetic energies is numerically observed withing the framework of single fluid MagnetoHydroDynamics. - Reconstruction of initial flow data is found to occur for 3D. MHD system of equations. \Rightarrow Recurrence - Fast dynamos are observed with chaotic flow lines at Prandtl number unity. - A Thyagaraja, Culham Labs, UK - Vinod Saini, Udaya Maurya, IPR, India - Nagavijavalakshmi Vydvanathan, NVIDIA, India Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</ Summary & Discussions #### Summary & Discussions - Coherent nonlinear oscillation between fluid and magnetic energies is numerically observed withing the framework of single fluid MagnetoHydroDynamics. - Reconstruction of initial flow data is found to occur for 3D MHD system of equations. ⇒ Recurrence - Fast dynamos are observed with chaotic flow lines at Prandtl number unity. #### Acknowledgement - A Thyagaraja, Culham Labs, UK - Vinod Saini, Udaya Maurya, IPR, India - Nagavijayalakshmi Vydyanathan, NVIDIA, India Thank You Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</ Summary & Discussions ## Summary & Discussions - Coherent nonlinear oscillation between fluid and magnetic energies is numerically observed withing the framework of single fluid MagnetoHydroDynamics. - Reconstruction of initial flow data is found to occur for 3D MHD system of equations. ⇒ Recurrence - Fast dynamos are observed with chaotic flow lines at Prandtl number unity. ### Acknowledgement - A Thyagaraja, Culham Labs, UK - Vinod Saini, Udaya Maurya, IPR, India - Nagavijayalakshmi Vydyanathan, NVIDIA, India Thank You Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra Taylor-Woltjer / Qin #### Motivation - A steady state for near ideal plasma was derived by L. Woltjer in 1954 by extremising the free energy constructed out of magnetic helicity $(H_m = \int \vec{A} \cdot \vec{B} dV)$ and magnetic energy $(E_m = \int B^2 dV)$ and $\vec{B} \cdot \hat{n} = 0$. - This particularly yielded $\vec{\nabla} \times \vec{B} = \alpha(x)\vec{B}$ subject to $\vec{B} \cdot \vec{\nabla} \alpha = 0$ on the "walls". $\alpha = \alpha(x)$ represents the rigidity of large number of volume $(H_m = \int_V \vec{A} \cdot \vec{B} dV)$. - J. B. Taylor considered a particular limit where, a weak dissipation would break all the local helicity constants except the one considered over the vessel with conducting surfaces, resulting in $\alpha(x) = \alpha_0 = constant$ and thereby, $\vec{\nabla} \times \vec{B} = \alpha_0 \vec{B}$. - Thus it was known that large scales do not participate in the plasma relaxation until H. Qin et al [PRL, 109, 235001 (2012)] who has given arbitrary scale relaxation model. 22/2 #### Preliminary Numerical Experiment: Taylor - Woltjer / Qin - We numerically evolve a three dimensional MHD plasma from a Beltrami class of solution in a region bounded by conducting walls $(\vec{B} \cdot \hat{n} = 0 = \vec{u} \cdot \hat{n})$ and "suddenly" allow to expand the plasma and fill the new volume. - The expansion mediates via reconnection of magnetic field lines thereby flow of kin and mag energy between scales. - We measure the scales involved during this relaxation of the plasma and from our numerical tools attempt to identify a model of plasma relaxation. #### References - Taylor, PRL, 33, 1139 (1974), Woltjer, PNAS, 44, 489 (1958) - H Qin et al, PRL, 109, 235001 (2012) Taylor-Woltjer / Qin Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Coord Occidence Occide Taylor-Woltjer / Qin #### Preliminary Results - 1 The parameters chosen are such that magnetic helicity (H_m) remains constant while H_G decays allowing a Taylor-like situation. - 2 For wavenumber k = 1, for all values of the parameters studies, power in magnetic energy spectra is seen to increase while the power in kinetic energy spectra decreases with time. - 3 For k = 4, 8, the behavior is opposite for \vec{B} spectra. - 4 As plasma expands from time t=0 with k=1 from a small volume to fill up the simulation volume, in general while the whole spectra is seen to contribute, mode numbers $k\sim 10$ are seen to participate in the relaxation process more dominantly. - For k = 4, 8, the relaxation process is dominantly controlled by k>10 modes. $$\begin{split} &\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = 0 \\ &\vec{j} = \frac{1}{4\pi} \vec{\nabla} \times \vec{B} \\ &\vec{E} = -\frac{\vec{u} \times \vec{B}}{c} + \eta \vec{j} \\ &\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} = \frac{\mu}{\rho} \nabla^2 \vec{u} - \frac{1}{\rho} \vec{\nabla} P + \frac{1}{\rho} (\vec{j} \times \vec{B}) \\ &\frac{\partial \vec{B}}{\partial t} = -c \vec{\nabla} \times \vec{E} \\ &\vec{\nabla} \cdot \vec{B} = 0 \\ &\frac{d}{dt} \left(\frac{P}{\rho^{\gamma}} \right) = 0 \end{split}$$ 26/21 Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary $$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \vec{\nabla} \times (\vec{u} \times \vec{B}) + \vec{\nabla} \times (\eta \vec{j})$$ $$= -\frac{1}{c} \vec{\nabla} \times (\vec{u} \times \vec{B}) + \frac{\eta}{4\pi} \vec{\nabla} \times (\vec{\nabla} \times \vec{B})$$ $$= -\frac{1}{c} \vec{\nabla} \times (\vec{u} \times \vec{B}) + \frac{\eta}{4\pi} \nabla^2 \vec{B} \quad [\because \vec{\nabla} \cdot \vec{B} = 0]$$ $$\vec{\nabla} \times (\vec{u} \times \vec{B}) = (\vec{B} \cdot \vec{\nabla}) \vec{u} - (\vec{u} \cdot \vec{\nabla}) \vec{B} + \vec{u} (\vec{\nabla} \cdot \vec{B}) - \vec{B} (\vec{\nabla} \cdot \vec{u})$$ Assumptions: $$P = \gamma \rho KT \Rightarrow \frac{d}{dt} \left(\frac{P}{\rho^{\gamma}} \right) \equiv 0$$ identically $\eta = 0$ $$Definition: M_A = \frac{U_0}{V_A} = \frac{|\vec{U_0}| \sqrt{4\pi\rho}}{|\vec{R}|}$$ Vector Identities : $$(\vec{A} \times \vec{B}) \times \vec{C} = -\vec{C} \times (\vec{A} \times \vec{B})$$ $$\vec{A} \times (\vec{\nabla} \times \vec{B}) + \vec{B} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{A} \cdot \vec{B}) - (\vec{A} \cdot \vec{\nabla}) \vec{B} - (\vec{B} \cdot \vec{\nabla}) \vec{A}$$ $$\Rightarrow \qquad \vec{B} \times (\vec{\nabla} \times \vec{B}) + \vec{B} \times (\vec{\nabla} \times \vec{B}) = \vec{\nabla}(\vec{B} \cdot \vec{B}) - (\vec{B} \cdot \vec{\nabla})\vec{B} - (\vec{B} \cdot \vec{\nabla})\vec{B}$$ $$\Rightarrow \qquad 2\vec{B} \times (\vec{\nabla} \times \vec{B}) = \vec{\nabla}(\vec{B}^2) - 2(\vec{B} \cdot \vec{\nabla})\vec{B}$$ $$\Rightarrow \qquad \vec{B} \times (\vec{\nabla} \times \vec{B}) = \frac{1}{2}\vec{\nabla}(\vec{B}^2) - (\vec{B} \cdot \vec{\nabla})\vec{B}$$ $$\Rightarrow \qquad (\vec{\nabla} \times \vec{B}) \times \vec{B} = (\vec{B} \cdot \vec{\nabla})\vec{B} - \frac{1}{2}\vec{\nabla}(\vec{B}^2)$$ 28/21 Benchmark of MHD2D: Hydrodynamic (KH) • $\nu = 0.0001$ Rupak Mukherjee IPR, India 29/21 Benchmark of MHD2D: Hydrodynamic (KH) ## Benchmarking with Analytical result #### Analytical Growth Rate for a Broken Jet Drazin, P. (1961). Journal of Fluid Mechanics, 10: 571-583. $$\gamma = \frac{k_x U_0}{3} \left[\sqrt{3} - 2\frac{k_x}{R_E} - 2\left\{ \left(\frac{k_x}{R_E}\right)^2 + 2\sqrt{3}\frac{k_x}{R_E} \right\}^{\frac{1}{2}} \right]$$ $$R_E = \frac{U_0 d}{V}$$ d = Shearing Length Benchmark of MHD2D: Hydrodynamic (KH) ## Evaluation of Growth rate of KH Instability Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</ Benchmark of MHD2D: Hydrodynamic (KH) Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○</ Benchmark of MHD2D: Hydrodynamic (KH) #### Growth Rate with Mach Number Figure: Analytical & M = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 34/21 Benchmark of MHD2D: Hydrodynamic (KH) # Benchmarking of MHD2D for compressible flows Motivation G-MHD3D Nonlin Coherent Oscillation Recurrence Dynamo in 3D MHD Summary Extra Benchmark of MHD2D: MagnetoHydroDynamic (KH) ## Benchmarking of compressible MHD flows ## Benchmarking of MHD2D for compressible flows Numerical checks of MHD2D for KH flow in MHD system IPR, India GPU Performance of G-MHD3D (With Nagavijayalakshmi Vydyanathan, NVIDIA, India) MotivationG-MHD3DNonlin Coherent OscillationRecurrenceDynamo in 3D MHDSummaryExtra○○○○○○○○○○○○ GPU Performance of G-MHD3D with Passive Tracers (With Vinod Saini, IPR & Naga Vydyanathan, NVIDIA, India) ## G-MHD3D & 3D Poisson solver Performance – Hackathon - 2018 | 3D Poisson Solver:
Number of GPUs
(Resolution) | Total
Time
(ms) | Local
FFT
(ms) | Commu
nication
(ms) | |--|-----------------------|----------------------|---------------------------| | 1
(512 × 512 × 512) | 19.9 | 19.8 | 0 | | 2
(512 × 512 × 512) | 25.4 | 9.84 | 14.0 | | 4
(512 × 512 × 512) | 14.6 | 5.01 | 8.59 | | 4
(1024×1024×1024) | 153 | 82.0 | 61.0 | GMHD3D: Grid Resolution Out-of-place FFT 64 X 64 X 64 64 X 64 X 64 1.54 128 X 128 X 128 14.6 Performance of Multi-GPU 3D Poisson solver using accFFT library. GMHD3D has been openACC parallalised using cuFFT library. | Run time of
GMHD3D (in
seconds)
(10 iterations) | | |--|--| | 0.464 | | | 0.861 | | | 4.009 | | | 646.6 | | | | | 40/21